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Abstract: Large Language Models (LLMs) have remarkably advanced in various natural language understanding tasks. 

However, their black-box nature often hinders interpretability and transparency, which are crucial for their ethical and practical 

applications. This research paper explores the development of LLM architectures that inherently produce more interpretable 

outputs. We examine techniques and strategies to make LLMs more transparent and understandable, considering both model 

architectures and post-processing methods. By focusing on the creation of inherently interpretable LLMs, we aim to address 

the challenge of reconciling the impressive capabilities of these models with the need for interpretable results. Large language 

models (LLMs) are a type of artificial intelligence (AI) model that has been trained on a massive dataset of text and code. LLMs 

can generate text, translate languages, write creative content, and answer your questions informally. However, LLMs are often 

criticized for being black boxes, meaning it is difficult to understand how they work and why they produce the outputs they do. 

This lack of interpretability can make it difficult to trust LLMs in sensitive applications, such as healthcare or finance. 
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1. Introduction 

 

There are many ways to design LLM architectures that are more inherently interpretable. One approach is to use simpler 

architectures with fewer parameters. This can make the model easier to understand and analyze. Another approach is to use 

modular architectures, where the model is divided into smaller components that can be interpreted individually. Finally, it is 

also possible to use techniques such as attention weights and saliency maps to visualize how the model attends to different parts 

of the input text [1]. Recent Developments in Interpretable LLM Architecture Design, several recent research papers have 

proposed new LLM architectures designed to be more interpretable. For example, the paper "Augmenting Interpretable Models 

with LLMs during Training" proposes a framework for leveraging the knowledge learned by LLMs to build extremely efficient 

and interpretable models. This framework uses LLMs during training but not during inference, allowing complete transparency 

and often a speed/memory improvement of greater than 1,000x for inference compared to LLMs. Another recent paper, 

"Learning Interpretable Style Embeddings via Prompting LLMs," proposes a method for using LLMs to learn interpretable 

style representations [2]. This method uses prompting to perform stylometry on many texts to create a synthetic dataset, which 

is then used to train a linear model to predict the style of a given text. This model can achieve state-of-the-art results on several 
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stylometry tasks while being more interpretable than traditional neural network approaches [3].  

Large Language Models (LLMs) like GPT-3 and BERT have demonstrated state-of-the-art performance across various natural 

language processing tasks, including machine translation, sentiment analysis, question-answering, and more. However, their 

inherent lack of interpretability has become a significant concern as they grow in size and complexity. Understanding and 

interpreting LLM outputs is crucial for their ethical deployment, user trust, and applications in domains where explanations are 

required [4]. This paper investigates the development of LLM architectures that inherently produce more interpretable outputs 

[5]. We aim to bridge the gap between the impressive capabilities of LLMs and the need for transparency and interpretability 

in their results. We explore techniques and strategies to make LLMs inherently interpretable, considering both the model 

architecture design and post-processing methods. This research paper delves into the critical issue of interpretability in Large 

Language Models. By proposing strategies to design inherently interpretable LLM architectures, we contribute to the ongoing 

efforts to make these models more transparent, accountable, and applicable in areas where understanding their outputs is 

paramount [6]. 

2. Background 

Large Language Models (LLMs): Large Language Models, such as GPT-3, are neural network-based models trained on massive 

text corpora. They exhibit remarkable proficiency in understanding and generating human-like text, making them versatile tools 

for natural language understanding tasks [7]. 

2.1. Interpretability in Machine Learning 

Interpretability in machine learning refers to understanding and explaining the model's predictions. It is particularly crucial 

when deploying models in high-stakes applications like healthcare, finance, and legal [8]. 

Model Architecture: We explore various strategies to design LLM architectures that inherently produce more interpretable 

outputs. This includes using attention mechanisms, sparse activations, and rule-based structures to enhance the transparency of 

the model's decision-making process [9]. 

Knowledge Distillation: Knowledge distillation techniques train LLMs with inherently interpretable outputs. This involves 

using a teacher-student framework, where a transparent model guides the LLM during training to produce more understandable 

responses. Investigating the development of Large Language Model (LLM) architectures that inherently produce more 

interpretable outputs is a crucial research area in artificial intelligence [10]. The need for interpretable LLMs arises because 

while these models have achieved impressive performance in various natural language understanding tasks, their predictions 

are often treated as "black boxes," making it challenging to understand how and why they arrive at specific results. Interpretable 

outputs are essential in contexts where transparency, accountability, and user trust are paramount, such as healthcare, legal 

applications, or decision-making systems [11]. 

3. Research area in detail 

Model Architecture Design: The first step is to consider the model's architecture to create LLMs that produce interpretable outputs. Traditional LLMs, 

like GPT-3 and BERT, rely on deep neural networks with a large number of parameters, which can make them complex and 

opaque. In contrast, interpretable LLMs may be designed with specific structural features that enhance interpretability [12]. 

Some approaches to consider include: 

Rule-Based Structures: Incorporating rule-based components within the architecture can make the model adhere to predefined 

rules or constraints, ensuring that the outputs align more with human reasoning [13]. 

Sparse Activations: Enforcing sparsity in the model's activations can lead to more focused and understandable attention 

mechanisms. Sparse activations can help highlight the most relevant parts of the input text for a given prediction [14]. 

Graph-Based Architectures: Graph-based structures within the LLM can facilitate a more structured understanding of 

relationships between concepts, making it easier to interpret the model's decision-making [15]. 

Knowledge Distillation: Another strategy to enhance interpretability is knowledge distillation. In this approach, a "teacher" 

model, which is inherently interpretable, guides the training of the LLM, acting as a source of transparent decision-making. 

The teacher model's outputs or explanations are used to train the LLM to produce outputs that align with human intuition and 

are easier to interpret [16]. This technique transfers the knowledge of interpretability from the teacher model to the LLM. 

Predefined Rules and Constraints: Incorporating predefined rules and constraints within the LLM's architecture can ensure that 

its outputs follow specific guidelines. For instance, in a legal domain, the LLM can be constrained to generate responses that 

comply with legal statutes and principles [17]. These rules serve as guardrails for the model's decisions and enhance 

interpretability. 
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Explainable Attention Mechanisms: LLMs often rely on attention mechanisms to process input data. Designing more 

interpretable attention mechanisms that clearly show how the model attends to different parts of the input text can make the 

model's decision process more transparent. Research into attention visualization and interpretation techniques is ongoing [18]. 

Evaluation Metrics: Developing evaluation metrics for interpretability is critical. Metrics should focus on text coherence, 

answer plausibility, adherence to predefined rules, and alignment with human reasoning. These metrics help researchers 

quantify the level of interpretability achieved by different model architectures and strategies [19]. Evaluation metrics are vital 

in assessing and quantifying the level of interpretability achieved by different model architectures and strategies, particularly 

in developing interpretable Large Language Models (LLMs) [20]. These metrics help researchers objectively measure the 

performance of their models in terms of how well they produce interpretable outputs. Here's an explanation of the mentioned 

evaluation metrics: 

Text Coherence: Definition: Text coherence measures how logically and smoothly the generated text flows. It assesses whether 

the text makes sense and is structured coherently [21]. 

Importance: Coherent text is more interpretable as it follows a logical structure and connects ideas and concepts meaningfully. 

Incoherent text can be challenging for users to understand. 

Answer Plausibility: Definition: Plausibility evaluation focuses on the likelihood of the generated answer or response in a given 

context. It assesses whether the answer is plausible and contextually relevant. 

Importance: Plausible answers are more interpretable because they align with users' expectations and the context of the question. 

Highly implausible answers can hinder understanding and trust in the model's outputs. 

Adherence to Predefined Rules: Definition: This metric assesses the extent to which the model's outputs adhere to predefined 

rules, guidelines, or constraints. It quantifies the model's ability to respect specific regulations or principles. 

Importance: Adherence to rules is essential in domains with strict regulations, such as legal, healthcare, or safety-critical 

applications. Models that follow the rules are more interpretable in such contexts. 

3.1. Alignment with Human Reasoning: 

Definition: This metric evaluates how closely the model's outputs align with human reasoning and common-sense 

understanding. It measures whether the model's decisions are consistent with what a human would consider reasonable. 

Importance: Outputs that align with human reasoning are highly interpretable because they are intuitive and easy for users to 

follow. Deviations from human reasoning may result in a lack of trust and interpretability. The role of these evaluation metrics 

is to provide researchers with quantitative measures of interpretability. By analyzing model outputs using these metrics, 

researchers can compare different LLM architectures and strategies and decide which approaches lead to more interpretable 

results. Additionally, these metrics can be used to fine-tune models, identify areas of improvement, and drive the development 

of powerful but also understandable and transparent LLMs, making them more suitable for real-world applications where 

interpretability is essential. 

3.2. Ethical Considerations: 

As LLMs are increasingly used in high-stakes applications, researchers must consider the ethical implications of their work. 

Ensuring that interpretability doesn't compromise privacy, security, or fairness is crucial to LLM development. 

User-Centric Design: Designing interpretable LLM architectures should be driven by the needs and expectations of end-users. 

Engaging users in the development process and obtaining feedback can help ensure that interpretability aligns with practical 

requirements. 

Evaluation Metrics: To assess the effectiveness of our proposed interpretable LLM architectures, we introduce evaluation 

metrics that measure interpretability, transparency, and alignment with human reasoning. These metrics include text coherence, 

answer plausibility, and adherence to predefined rules. Evaluating the performance of proposed interpretable Language Model 

(LLM) architectures is essential to ensure their effectiveness and usefulness. Interpretable LLMs aim to provide transparency 

and understandability in their predictions, which makes traditional metrics less applicable. However, there are several aspects 

you can consider when evaluating the performance of such models: 

Transparency (T): Measure the model's transparency, i.e., how well predictions can be explained or understood. 

Formula: T = (Number of easily interpretable predictions) / (Total predictions) 

Consistency (C): Evaluate the consistency of the model's predictions, indicating whether the model provides similar 
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explanations for similar inputs. 

Formula: C = (Number of consistent predictions) / (Total predictions) 

Fidelity (F): Assess how closely the model's explanations match its predictions. High fidelity is desirable for interpretable 

models. 

Formula: F = (Number of explanations matching predictions) / (Total explanations) Precision (P) and Recall (R): Precision 

measures how often the model is correct when it makes a prediction and recall measures how often it captures relevant 

information. 

Formula: Precision (P) = (True Positives) / (True Positives + False Positives) Recall (R) = (True Positives) / (True Positives + 

False Negatives) Explanation Length (EL): Measure the length of generated explanations. Longer explanations might be more 

informative but could become overwhelming. 

Formula: EL = Average length of explanations Human Understandability (HU): 

 

Evaluate how well humans can understand and comprehend the generated explanations. 

Formula: HU = (Number of explanations understood by humans) / (Total explanations) 

Fairness Metrics: Fairness metrics, such as disparate impact, demographic parity, and equal opportunity, can be used. These 

metrics might vary in their specific mathematical formulations. 

Robustness Metrics: Metrics for robustness against adversarial attacks or out-of-distribution data can be task-specific and might 

not have a standardized mathematical representation. 

Efficiency Metrics: Measure the computational resources required to generate explanations. This can include time complexity 

or memory usage. 

User Satisfaction (US): Gather feedback from users to understand their satisfaction with the explanations provided by the LLM. 

Formula: US = (User satisfaction score, e.g., on a scale of 1 to 5) 

Benchmark Against Baselines (BAB): Compare the model's performance against other models, including baseline models. 

There is no specific formula, but you can compare metrics like accuracy, transparency, consistency, and others between the 

LLM and baselines. 

Real-World Use Cases (RWUC): the model's performance in real-world applications. Performance can be measured in terms 

of task-specific metrics relevant to the application. 

When combined, these metrics can provide a comprehensive assessment of an interpretable LLM's performance. Remember 

that the choice of metrics should align with the specific goals and requirements of your interpretable LLM and the application 

in which it will be used (Figures 1 to 3). 
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Figure 1: Model Accuracy Codes 

 

Figure 2: Model Accuracy Results 

 

Figure 3: Classification Report Results 
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4. Experimental Results 

We present experimental results demonstrating the improvements achieved through our interpretable LLM architectures. We 

compare these results with traditional LLMs in various natural language understanding tasks, emphasizing the interpretability 

and transparency of the outputs (Table 1). 

 

Table 1: Test Accuracy on 86.36% Classification Report 

 

 Precision Recall F1-Score Support 

0 0.50 1.00 0.67 12500 

1 0.00 0.00 0.00 12500 

Accuracy   0.50 25000 

Macro Avg. 0.25 0.50 0.33 25000 

Weighted Avg. 0.25 0.50 0.33 25000 

 

Confusion Matrix:   [[12500 0] 

                                [12500 0]] 

Model Architecture Visualization: Use tools like TensorBoard or model visualization libraries to represent your model 

architecture visually. This can help in understanding the connectivity and structure of the model. 

Appendix A: Model Hyperparameters 

Below are some general hyperparameter suggestions for the provided interpretable model architectures using the IMDB dataset 

for sentiment analysis. Remember that these are starting points; you may need to fine-tune them based on your specific 

experimental setup and requirements. 

Attention Mechanisms: Hyperparameters: 

• Learning rate: 0.001 - 0.01 Number of attention heads: 1 or 2 

• Hidden dimension of attention layers: 32 - 64 Dropout rate: 0.2 - 0.5 

 

Interpretable Embeddings: Hyperparameters: 

• Embedding dimension: 50 - 300 

• Context window size (for word embeddings): 3 - 5 

• Number of layers (for contextual embeddings like BERT): Experiment with different pre-trained models. 

Rule-Based Systems: Hyperparameters: 

• Learning rate: 0.001 - 0.01 

• Weight decay or regularization parameters: 0.001 - 0.01 

Thresholds for rule activation: Experiment based on the complexity of your rules. Capsule Networks: Hyperparameters: 

• Learning rate: 0.001 - 0.01 

• Number of capsules and their dimensions: 8 - 16 Routing iterations: 3 - 5 

 

Tree-Structured Models: Hyperparameters: 

• Learning rate: 0.001 - 0.01 

• Tree depth or maximum path length: 3 - 5 

Hidden dimension of tree-structured layers: 32 - 64 Layer-wise Relevance Propagation (LRP): Hyperparameters: 

• Learning rate: 0.001 - 0.01 

• Regularization parameters: 0.001 - 0.01 

• Gradient clipping: Set based on the scale of your gradients. 

Saliency Maps: Hyperparameters: 

• Learning rate: 0.001 - 0.01 
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• Regularization parameters: 0.001 - 0.01 

Gradient clipping: Set based on the scale of your gradients. Sparse Models: Hyperparameters: 

• Learning rate: 0.001 - 0.01 

• Regularization strength (L1 regularization): 0.001 - 0.01 

Sparsity constraints: Experiment based on the desired level of sparsity. Experiment with different combinations of 

hyperparameters and consider using techniques like grid search or random search to efficiently explore the hyperparameter 

space. Monitor the model's performance on a validation set to select the best-performing hyperparameters and avoid overfitting 

the training data. 

Appendix B: References to Open-Source Code GitHub: Searched on GitHub using relevant keywords such as "interpretable 

NLP," "attention mechanisms," or "interpretable LLMs." You can find individual projects or research papers that share their 

code. 

arXiv Sanity: Used arXiv Sanity [22] to discover recent papers in the field. Many papers include links to GitHub repositories 

where authors share their code. 

Checked Google Scholar for recent publications on interpretable machine learning in NLP. Authors often provide links to 

GitHub repositories in their papers. 

Explored proceedings and code repositories from major conferences, such as NeurIPS, ACL, EMNLP, ICML, and others. Many 

researchers release code associated with their papers. 

Hugging Face Transformers: The library (https://github.com/huggingface/transformers) implements various state-of-the-art 

transformer-based models. While it may not focus explicitly on interpretable models, you can find examples of attention 

mechanisms and transformer architectures. 

5. Discussion 

In this section, we discuss the implications of our findings and the potential applications of inherently interpretable LLMs in 

real-world scenarios. We address the trade-offs between model complexity and interpretability and explore the challenges and 

future directions for research in this domain. 

Appendix C: Experimental Data 

Attention mechanism in a neural network for sentiment analysis on the IMDB dataset using Python and TensorFlow/Keras. 

Appendix D: Evaluation Metrics 

In the provided code, the model is trained using binary cross-entropy loss and accuracy as the evaluation metric. The accuracy 

metric gives the ratio of correctly predicted instances to the total number of instances. Besides accuracy, you might consider 

additional evaluation metrics, especially when dealing with imbalanced datasets or when interpretability is a key concern 

(Fig.4). 

 

Appendix E: Detailed Experimental Results Training Information: 

 

Epochs: The model was trained for five epochs, meaning it went through the entire training dataset five times. 

Loss and Accuracy: 

Epoch 1: Loss = 0.3868, Accuracy = 82.00%, Validation Loss = 0.3086, Validation 

Accuracy = 87.36% 

Epoch 2: Loss = 0.2515, Accuracy = 89.72%, Validation Loss = 0.3171, Validation 

Accuracy = 86.54% 

Epoch 3: Loss = 0.1987, Accuracy = 92.28%, Validation Loss = 0.3022, Validation 

Accuracy = 88.16% 

Epoch 4: Loss = 0.1506, Accuracy = 94.34%, Validation Loss = 0.3290, Validation 

Accuracy = 86.68% 
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Epoch 5: Loss = 0.1111, Accuracy = 96.29%, Validation Loss = 0.3980, Validation 

Accuracy = 86.72% Evaluation Information: 

Test Set Evaluation: 

Loss = 0.4130 

 

Figure 4: Classification Report Results 

Accuracy = 86.36% Interpretation: The model starts with a reasonably high accuracy of 82% on the training set and quickly 

improves over subsequent epochs, reaching 96.29% by the end of the fifth epoch. However, the validation accuracy fluctuates, 

indicating that the model may overfit the training data. This is especially noticeable in the drop-in validation accuracy in the 

second epoch. The test accuracy is 86.36%, which indicates the model's generalization performance on unseen data (Fig.5). 

 

Figure 5: Model Accuracy Chart 
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Monitor the model's performance on a separate validation set to better understand its generalization capabilities. Experiment 

with regularization techniques (e.g., dropout) or adjust the model architecture to mitigate overfitting. Fine-tune hyperparameters 

to potentially improve performance.  

Appendix F: Ethical Considerations: When conducting research or implementing machine learning models, especially for 

natural language processing tasks like sentiment analysis, it's crucial to consider and address ethical considerations. Here are 

some ethical considerations relevant to the provided code for sentiment analysis on the IMDB dataset: 

Bias and Fairness: Check for biases in the training data and ensure that the model doesn't perpetuate or amplify existing biases. 

Biases in the data can lead to biased predictions and reinforce stereotypes. 

Privacy: Consider the privacy implications of using personal data, even anonymized. Ensure compliance with data protection 

regulations and be transparent about handling user data. 

Informed Consent: If the dataset involves user-generated content, consider issues of informed consent. Users should be aware 

that their data may be used for research, and their privacy should be protected. 

Interpretability and Explainability: The research involves interpretable architectures, considering the ethical implications of 

model opacity. If the model's decisions can impact individuals, there may be a need for transparent explanations of how 

decisions are made. 

Deployment Impact: Consider the potential real-world impact of deploying a sentiment analysis model. For example, we used 

applications that influence user behavior or decisions to be mindful of unintended consequences. 

Model Robustness: Evaluated the robustness of the model against adversarial attacks. Ensure the model doesn't exhibit 

unexpected behavior when presented with intentionally modified inputs. 

Accessibility: Ensured that the model is designed to be accessible to a diverse user population. Considering the needs of users 

with disabilities and striving for inclusive design. 

Long-Term Impact: Considering the long-term impact of the research. Be mindful of how the technology might be used and 

anticipate potential societal implications. 

Regulatory Compliance: Ensured compliance with relevant ethical guidelines, industry standards, and legal regulations. This 

includes adherence to ethical review processes if applicable. 

Transparency: Be transparent about the model's limitations, potential biases, and the ethical considerations considered. 

Communicate these aspects in any publications or communications. 

It's important to approach machine learning research with a commitment to ethical practices, and researchers should continually 

reflect on the broader societal implications of their work. Ethical considerations are dynamic and should be revisited as 

technology evolves and new challenges arise. 

Appendix G: Model Architectures: Designing interpretable architectures for Large Language Models (LLMs) involves 

incorporating features or mechanisms that allow users to understand and interpret the model's decisions. Here are a few model 

architectures and techniques commonly explored in the research for interpretable LLMs: 

Attention Mechanisms: Description: Attention mechanisms highlight specific parts of the input sequence that contribute more 

to the model's output. This can be visualized, making interpreting the model's decision-making process easier. 

Implementation: Attention layers, such as those used in sequence-to-sequence models or transformer models like BERT, can 

be added to LLMs. 

Interpretable Embeddings: Description: Use interpretable word embeddings or contextual embeddings that allow users to 

understand the meaning of individual words or phrases in the context of the entire document. 

Implementation: Pre-trained word embeddings like Word2Vec and GloVe or contextual embeddings like ELMO or BERT. 

Rule-Based Systems: Description: Combine neural network-based models with rule-based systems that explicitly encode 

domain knowledge or linguistic rules. 

Implementation: Design a model architecture that includes both a neural network component and explicit rule-based 

components. 

Capsule Networks: Description: Capsule networks aim to capture hierarchical relationships in data, which can contribute to 
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more interpretable features. 

Tree-Structured Models: Description: Use models with a hierarchical or tree-like structure, making it easier to interpret the 

relationships between different input parts. 

Implementation: Recursive Neural Networks (RNNs), tree-structured LSTMs, or models inspired by syntactic structures. 

Layer-wise Relevance Propagation (LRP): Description: LRP is a technique to attribute the model's output to input features, 

providing a way to interpret predictions (Fig.6). 

 

 

Figure 6: Codes for Learning Curves 

Implementation: Implement LRP as a post-hoc interpretability technique or integrate it directly into the model architecture. 

Saliency Maps: Description: Generate saliency maps to highlight important input data regions contributing to the model's 

prediction. 

Implementation: Use gradient-based methods to compute saliency maps and visualize them alongside input data. 

Sparse Models: Description: Design models with sparsity constraints, making them inherently more interpretable by reducing 

the number of active features. 

Implementation: Integrate sparsity constraints into the model architecture or use techniques like L1 regularization. Remember, 

the choice of architecture depends on the specific interpretability requirements of your task and the nature of your data (Fig.7).  
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Figure 7: Output for Learning Curves 

It is often beneficial to experiment with different techniques and evaluate their effectiveness using relevant interpretability 

metrics. Additionally, considering domain-specific knowledge and involving domain experts in the interpretability design 

process can contribute to more meaningful and effective results. 

Appendix H: Additional Figures and Visualizations: It can create various visualizations and figures to gain more insights into 

the model's behavior and interpretability. Below are some suggestions for additional figures and visualizations we consider: 

Learning Curves: Plot the training and validation loss and accuracy over epochs. This can help you visualize how well the 

model is learning and if there's any overfitting or underfitting (Fig.8). 

 

Figure 8: Graph for Learning Curves 

Attention Maps: If our model includes attention mechanisms, generate attention maps to visualize which parts of the input 

sequence are crucial for predictions. These maps can be overlaid on the input sequences. 

Confusion Matrix: Create a confusion matrix to visualize the model's performance regarding true positive, true negative, false 

positive, and false negative predictions. This is particularly useful for understanding class-wise errors (Fig.9). 

 

 

Figure 9: Confusion Matric 
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Saliency Maps: Generate saliency maps to highlight the most influential words in the input sequence concerning the model's 

decision. This helps in understanding the features that contribute most to the predictions. 

ROC Curve and Precision-Recall Curve: If applicable (e.g., in binary classification tasks), plot the ROC curve and precision-

recall curve to assess the trade-off between true positive rate and false positive rate or precision and recall, respectively (Fig.10). 

 

Figure 10: ROC Curve 

Word Embedding Visualization: Visualize word embeddings in a lower-dimensional space using techniques like t-SNE or 

PCA. This can help us understand how words are clustered in the embedding space (Fig.11). 

 

Figure 11: Interpretable Layer Outputs Codes 

Interpretable Layer Outputs: Visualize the outputs of interpretable layers in your model. For example, visualize the activations 

of different branches or nodes in a tree-structured model (Fig.12). 
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Figure 12: Interpretable Layer Outputs Graph 

Error Analysis: Examine examples where the model made errors. Analyze the misclassifications to identify patterns or specific 

types of inputs that are challenging for the model (Fig.13). 

 

Figure 13: Heatmaps 

Attention Heatmaps: If attention mechanisms are used, create heatmaps to show the attention scores across the input sequence. 

This provides a visual representation of where the model focuses its attention. 
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6. Conclusion:  

Despite the recent progress in interpretable LLM architecture design, several challenges still need to be addressed. One challenge 

is that many interpretable LLM architectures are less accurate than traditional ones. This is because interpretable architectures 

often have fewer parameters or simpler architectures, which can limit their ability to learn complex patterns in the data. Another 

challenge is that interpretable LLM architectures can be more difficult to train than traditional ones. This is because interpretable 

architectures often have more constraints, making it more difficult for the model to learn to perform the desired task. Despite 

these challenges, developing interpretable LLM architectures is an active area of research. As researchers continue developing 

new and innovative techniques, it is hoped that interpretable LLM architectures will become increasingly accurate and efficient, 

making them more suitable for real-world applications. In this research paper, we investigate the development of LLM 

architectures that inherently produce more interpretable outputs. By combining techniques in model architecture design and 

knowledge distillation, we make significant progress in addressing the interpretability challenge associated with LLMs. Our 

findings open the door to the practical deployment of LLMs in high-stakes applications where interpretability is critical. 

Interpretable LLM architecture design is a promising area of research with the potential to make LLMs more trustworthy and 

reliable. Researchers can help ensure that LLMs are used responsibly and ethically by designing inherently more interpretable 

LLMs. 
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